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Heat transport by fluid flows with prescribed velocity fields
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We study the problem of heat transport by fluid flows with prescribed velocity fields. The advection-
diffusion equation in two dimensions is solved for two velocity fields:~i! a circulation and~ii ! a shear flow.
These two flows focus separately on the two dominant features of the mean large-scale flow observed in
turbulent convection experiments. We find that the Nusselt number, which measures the heat transport, scales
respectively for the two velocity fields.
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I. INTRODUCTION

Rayleigh-Bénard convection in a fluid enclosed in a ce
has been a system of much research interest. The dynam
driven by an applied temperature difference across the he
of the cell. The flow state is characterized by the geometr
the cell and two dimensionless numbers: the Rayleigh n
ber Ra5agDL3/(nk) and the Prandtl number Pr5n/k,
whereD is the applied temperature difference,L is the height
of the cell,g the acceleration due to gravity, anda, n, andk
are respectively the volume expansion coefficient, kinem
viscosity, and thermal diffusivity of the fluid. When Ra
sufficiently large, the convection becomes turbulent. In ad
tion to the statistical properties of the temperature and ve
ity fluctuations, there is the central issue of heat transpor
the fluid. The global heat transport is usually expressed
the dimensionless Nusselt number Nu, which is the ratio
the measured heat flux to the heat transported were t
only conduction. Before the onset of convection, heat
transported only by conduction and Nu is identically equa
one. When convection occurs, heat is more effectively tra
ported by the fluid due to its motion and Nu increases fr
1.

The work of Libchaber and co-workers on turbulent co
vection in low temperature helium gas@1,2# showed that Nu
has a simple power-law dependence on Ra:

Nu;Rab ~1!

and the exponentb is almost equal to 2/7, which is differen
from 1/3, the value that marginal stability arguments@3#
would give. This result led to the development of seve
theories @2,4–6#. All these theories giveb52/7 but they
were based on rather different physical assumptions. M
over, some of the assumptions have not been supporte
experiments, see, e.g.,@7#. Further experimental investiga
tions appeared to indicate a dependence ofb on Pr, see, for
example, Ref.@8# for a review of the experimental result
The situation is further complicated by two recent expe
mental results. First, Niemelaet al. @10# made measurement
in low temperature helium gas over a much larger range
Ra, from 106 to 1017, and foundb close to 0.31. Second, Xu
et al. @11# studied turbulent convection in acetone in seve
experimental cells of different aspect ratios and conclu
that there is no significant range of Ra over which the pow
law behavior~1! holds. Furthermore, they showed that f
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Ra>107, the dependence of Nu on Ra can be represente
a combination of two power laws, which is consistent with
recent theory by Grossmann and Lohse@8,9#. Grossmann
and Lohse’s theory was based on a systematic decompos
of the thermal and kinetic energy dissipation into their bu
and boundary-layer contributions.

Another interesting feature observed in turbulent conv
tion is the presence of a persistent large-scale mean flow
spans the whole experimental cell@12#. The maximum mean
velocity of the flow was also found to scale as Ra to ab
1/2 @13#. The presence of a large-scale flow naturally induc
an interaction between the top and bottom thermal bound
layers. Such an interaction was taken to be absent in
marginal stability arguments. One obvious effect of the v
locity field, which satisfies the no-slip boundary condition,
that it produces a shear near the boundaries, which was
studied in Ref.@5#. In convection, the velocity and tempera
ture fields are coupled dynamically in a complicated fashi
On the one hand, the temperature field takes part in driv
the flow and is so-called active. On the other hand, the
sulting velocity field, in turn, shapes the temperature pro
in a self-consistent manner.

In this paper, we study the simpler problem of heat tra
port by fluid flows with prescribed velocity fields. We stud
two cases,~i! a circulation and~ii ! a shear flow, which focus
separately on the two dominant features of the large-s
mean flow observed in turbulent convection, with an aim
gaining physical insights or understanding of heat transp
in turbulent convection. The dependence of the heat trans
on the Peclet number, as estimated by the parameters s
fying the two flows, is investigated.

II. THE PROBLEM

We study the problem of heat transport by a fluid with
prescribed time-independent velocity field. To this end,
solve the steady state advection-diffusion equation

uW ~x,y!•¹W T~x,y!5k¹2T~x,y! ~2!

for a given incompressible velocity fielduW (x,y) in two di-
mensions: 0<x<L and 0<y<L. A temperature difference
of D is applied across they-direction while no heat conduc
tion is allowed across thex direction. That is, the tempera
ture fieldT(x,y) satisfies the following boundary condition
©2001 The American Physical Society02-1
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T~x,y50!5D; T~x,y5L !50; ~3!

]T

]x
~x50,y!5

]T

]x
~x5L,y!50 . ~4!

The heat transport by the fluid is then calculated from
temperature field solved.

The mean large-scale flow observed in turbulent conv
tion has two dominant features: it is a circulation that sp
the whole experimental cell, and it produces a shear nea
boundaries. To gain insights and understanding of how th
two aspects of the velocity field affect or determine the h
transport, we study two different velocity fields. The first o
is

ux5u0 sinS p
x

L D cosS p
y

L D , ~5a!

uy52u0 cosS p
x

L D sinS p
y

L D , ~5b!

whereu0 is a constant. Equation~5! focuses on the circulat
ing aspect of the mean large-scale flow. As seen from Fig
the fluid undergoes a complete cycle across the whole t
dimensional space. The velocity vanishes at the center buux
is finite along the boundariesy50 and y5L while uy is
finite along the boundariesx50 and x5L. The velocity
field, therefore, does not satisfy the no-slip boundary con
tion. Such a circulating flow has been studied in an inve
gation of the effects of a large-scale circulation on pass
scalar statistics@14#. One of the interesting results found
that study is that the mean temperature profile is significa
altered by the velocity circulation, and develops two therm
boundary layers aty50 andy5L. Each boundary layer is o
thicknessl at the central axis of the cell and across whi

FIG. 1. The circulating flow given by Eq.~5!. Both x andy are
normalized byL. The size of the arrow indicates the relative ma
nitude of the velocity. The contourC that encloses the lower ther
mal boundary layer is also shown.
04630
e

c-
s
he
se
t

1,
o-

i-
i-
e

ly
l

half the applied temperature difference drops. This me
temperature profile is just like that observed in turbulent c
vection. Thus the thermal boundary layers are not a con
quence of the no-slip velocity boundary condition. Rath
their existence allows for an increase in the heat trans
(Nu.1). In other words, the circulation enhances the h
transport. Our present interest is to study how the heat tra
port by the fluid depends on the strength of the circulation
measured by the parameteru0 or the dimensionless Pecle
number~Pe!, defined byu0L/k.

The second velocity field studied is a shear along
boundaryy50, with a position-dependent shear rateh(x):

ux5h~x!y, ~6a!

uy52
1

2
h8~x!y2. ~6b!

In Ref. @5#, the large-scale flow in turbulent convection w
approximated by a constant shear flow, represented by
~6! with h(x)5h, near the bottom boundary and the effe
of such a constant shear flow on the heat transport was s
ied. Here we consider a linear shear rate:h(x)5ax with a
being a constant, which is the simplest case that gives
exact analytical solution for the temperature field. Such
flow again does not satisfy the no-slip boundary condition
x50, x5L, andy50, as shown in Fig. 2. As in Ref.@5#, this
flow can be taken as an approximation of the large-scale fl
near the bottom boundary in turbulent convection. Positi
dependent shear rates have been considered by one o
present authors@15#. In this work, we study how the hea
transport by the fluid depends on the parametera or Pe de-
fined byaL3/k. In this case, Pe gives a measure of the
locity as well as the shear rate of the flow.

For the circulation Eq.~5!, we solve Eq.~2! numerically
to get the temperature fieldT(x,y). For the shear flow~6!,
we obtain an exact analytical solution for the temperat
field. The heat transport by the fluid is the heat conduc
across the boundaryy50. Thus, Nu is the ratio of the aver

FIG. 2. Similar plot as in Fig. 1 for the shear flow given by E
~6! with a linear shear rateh(x)5ax.
2-2
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age of the magnitude of the vertical temperature grad
over the boundaryy50 to D/L:

Nu5

K 2
]T

]y U
y50

L
D

L

. ~7!

Here,^•••& indicates an average overx, from x50 to x5L.

III. RESULTS AND DISCUSSIONS

For the circulating flow Eq.~5!, we numerically solve Eq
~2! and evaluate Nu. As expected, the heat transport is fo
to increase with the strength of the circulation. In Fig. 3,
show the dependence of Nu on Pe, which can be well re
sented by a power law with an exponent of a least-squar
value of 0.497. In the inset of Fig. 3, NuPe20.497 is plotted
versus Pe. As can be seen, the data points are consta
within an error of 0.1%, showing the good quality of th
power law.

We shall understand this result in the following. Since t
velocity field is incompressible, Eq.~2! implies

E
C
~uW T2k¹W T!•n̂dl50 ~8!

over any closed curveC in the two-dimensional domain
where n̂ is the outward normal. In particular, choose t
closed curveC, defined byy50, y5l, and 0<y<l with
x50 andx5L, which encloses the thermal boundary lay
at y50 ~see Fig. 1!. Sinceux and]T/]x vanish atx50 and
x5L, uy vanishes aty50 and]T/]y'0 at y5l, we have

FIG. 3. Nu as a function of Pe for the circulating flow shown
Fig. 1. Here, Pe is taken asu0L/k. The circles are numerical result
while the solid line is the best linear fit with a slope of 0.497 in t
log-log plot. In the inset, NuPe20.497 is plotted versus Pe. The dat
points are constant within an error of 0.1%, showing the good q
ity of the power law.
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^~uyT!uy5l&2kK 2
]T

]y U
y50

L '0. ~9!

Equation~9! states that the heat conducted across the lo
boundaryy50 is approximately equal to the heat convect
across the upper edge of the thermal boundary layer. T
we can estimate the heat transport by estimat
^(uyT)uy5l&. As l/L!1, uy(x,y5l)'2u0p(l/
L)cos(px/L). A horizontal temperature difference is induce
by the circulation with the boundaryx5L being hotter than
the boundaryx50. We estimateT(x,y5l) to have a similar
cosine dependence onx as (D/2)@12(8k2/p)cos(px/L)#,
wherek is some dimensionless constant. Hence we have

k2S u0L

k D S 2l

L D'

K 2
]T

]y U
y50

L
D

L

. ~10!

Using Eq.~7! and the estimate of Nu byL/(2l), Eq. ~10!
then gives

Nu'k Pe1/2. ~11!

Our theoretically estimated exponent 1/2 agrees well w
the numerical result of 0.497.

For the shear flow, we obtain an exact analytical solut
of the temperature profile. LetT(x,y) be separable inx and
y, that is,

T~x,y!5F~x!G~y!. ~12!

Substituting Eq.~12! into Eq.~2! and rearranging terms giv

axy
F8~x!

F~x!
2k

F9~x!

F~x!
5k

G9~y!

G~y!
1

ay2

2

G8~y!

G~y!
, ~13!

where a prime denotes a derivative with respect to the c
responding variable:x or y. The right-hand side of Eq.~13! is
a function ofy only when the left-hand side is a function o
bothx andy. This can only be the case ifF(x) is a constant,
sayc, and Eq.~13! becomes

k
G9~y!

G~y!
1

1

2
ay2

G8~y!

G~y!
50. ~14!

The exact analytical solution forT is thus

T~y!5cG~y!5DFc11c2E
0

y/L

expS 2
aL3

6k
q3DdqG

~15!

with the constantsc1 andc2 fixed by the two boundary con
ditions in Eq.~3!:

c151, ~16!

c2523S aL3

6k D 1/3FgS 1

3
,
aL3

6k D G21

, ~17!

l-
2-3
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whereg is the incomplete Gamma function@16#. The other
two boundary conditions in Eq.~4! are automatically satis
fied.

When Pe5aL3/k is large,

gS 1

3
,
aL3

6k D'G~1/3!52.6789 @Ref. @16##,

we have,

T~y!'DF120.6163S aL3

k D 1/3E
0

y/L

expS 2
aL3

6k
q3DdqG .

~18!

Using Eq.~7!, we find

Nu50.6163 Pe1/3 ~19!

for large Pe. In Fig. 4, we show NuPe21/3 vs Pe using nu-
merically evaluated results of Nu. The data points agree w
the value of 0.6163 to within an error of less than 0.005
Thus, for the shear flow with a linear shear rate, Nu sca
with Pe or equivalently the normalized shear rate to an
ponent 1/3.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have studied the problem of heat tra
port by fluid flows with prescribed velocity fields. This prob
lem is of interest in engineering applications. Our object
is, however, to gain insights into the more difficult proble
of heat transport in turbulent convection. The two veloc
fields that we have studied are, therefore, chosen such
they focus separately on the two dominant features, nam
the circulating and the shear-generating aspects of the m
large-scale flow observed in turbulent convection.

We have solved numerically and analytically the he
transport respectively for a circulating and a shear flow w
linear shear rate. As expected, the heat transport is foun
increase with the Peclet number. In both cases, we h
found that Nu scales as Pe to some exponent, and the v

FIG. 4. NuPe21/3 vs Pe for the shear flow Eq.~6! with a linear
shear rateh(x)5ax. Here, Pe is taken asaL3/k. The data points
agree with the value of 0.6163 to within an error of less th
0.005%.
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of the exponent is respectively 1/2 and 1/3 for the two v
locity fields. For the shear flow with linear shear rate, th
result is also equivalent to a scaling between Nu and
normalized shear rate with the same exponent 1/3. We h
shown that our numerical result for the circulating flow c
be understood by some theoretical estimates ofuyT along the
edge of the thermal boundary layer.

As discussed in the Introduction, the mean large-sc
flow observed in turbulent convection has both the char
teristics of the two velocity fields studied here: it is a circ
lation as well as approximately a shear within a visco
boundary layer near the boundaries of the cell. Our stu
thus suggests that Nu would generally depend on both
defined by the maximum average velocity of the flow and
normalized shear rate. It would, therefore, be interesting
study the heat transport by a prescribed velocity field that
both features. We shall report such a study and the res
elsewhere@17#.

There are two limits in which one expects the effect of t
mean large-scale flow on heat transport to be dominated
one of the two characteristics. The first limit is when t
thermal boundary layer is much thinner than the visco
boundary layer, which should be the case when Pr is v
large. In this limit, the velocity field can be well approx
mated as a simple shear within the thermal boundary la
Our result would suggest a scaling of Nu with the norm
ized shear rate to 1/3. This scaling result was obtained ea
in Refs.@5,15# for turbulent convection. The second limit i
when the viscous boundary layer, is much thinner than
thermal boundary layer, which should be the case when P
very small. In this limit, the velocity field within the therma
boundary layer might be taken as a circulation plus a t
shear layer. If the ratio of the thickness of the thermal bou
ary layer to that of the viscous boundary layer is lar
enough such that the contribution of the thin shear laye
the heat transport can be neglected, our result would t
suggest a scaling of Nu with Pe, defined by the maxim
average velocity, to 1/2. Together with the observation t
the maximum mean velocity of the large-scale flow sca
with Ra to an exponent of about 1/2@13#, our result would
further suggest a scaling of Nu with Ra to 1/4. Such a sca
was observed in several experimental studies@18,19# and a
numerical study@20# of turbulent convection in fluids with
small Pr. This scaling result was also obtained in Refs.@8,20#
by dimensional arguments. A key step in these dimensio
arguments is to approximate]2T/]y2 by D/(2l2) within the
thermal boundary layer. This approximation is, however,
obvious as the temperature should be quite well represe
by a linear function iny within the thermal boundary layer
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