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Heat transport by fluid flows with prescribed velocity fields
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We study the problem of heat transport by fluid flows with prescribed velocity fields. The advection-
diffusion equation in two dimensions is solved for two velocity field$:a circulation andii) a shear flow.
These two flows focus separately on the two dominant features of the mean large-scale flow observed in
turbulent convection experiments. We find that the Nusselt number, which measures the heat transport, scales
respectively for the two velocity fields.
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. INTRODUCTION Ra=10’, the dependence of Nu on Ra can be represented by
a combination of two power laws, which is consistent with a
Rayleigh-Baard convection in a fluid enclosed in a cell recent theory by Grossmann and LoH&9]. Grossmann
has been a system of much research interest. The dynamicsdad Lohse’s theory was based on a systematic decomposition
driven by an applied temperature difference across the heiglf the thermal and kinetic energy dissipation into their bulk
of the cell. The flow state is characterized by the geometry o&nd boundary-layer contributions.
the cell and two dimensionless numbers: the Rayleigh num- Another interesting feature observed in turbulent convec-
ber Ra= agAL®/(vk) and the Prandtl number Pw/x,  tion is the presence of a persistent large-scale mean flow that
whereA is the applied temperature differenteis the height  spans the whole experimental cglP]. The maximum mean
of the cell,g the acceleration due to gravity, angl v, andx velocity of the flow was also found to scale as Ra to about
are respectively the volume expansion coefficient, kinematid/2[13]. The presence of a large-scale flow naturally induces
viscosity, and thermal diffusivity of the fluid. When Ra is an interaction between the top and bottom thermal boundary
sufficiently large, the convection becomes turbulent. In addifayers. Such an interaction was taken to be absent in the
tion to the statistical properties of the temperature and velocmarginal stability arguments. One obvious effect of the ve-
ity fluctuations, there is the central issue of heat transport byocity field, which satisfies the no-slip boundary condition, is
the fluid. The global heat transport is usually expressed aghat it produces a shear near the boundaries, which was first
the dimensionless Nusselt number Nu, which is the ratio oktudied in Ref[5]. In convection, the velocity and tempera-
the measured heat flux to the heat transported were thetare fields are coupled dynamically in a complicated fashion.
only conduction. Before the onset of convection, heat iSOn the one hand, the temperature field takes part in driving
transported only by conduction and Nu is identically equal tothe flow and is so-called active. On the other hand, the re-
one. When convection occurs, heat is more effectively transsulting velocity field, in turn, shapes the temperature profile
ported by the fluid due to its motion and Nu increases fromn a self-consistent manner.
1. In this paper, we study the simpler problem of heat trans-
The work of Libchaber and co-workers on turbulent con-port by fluid flows with prescribed velocity fields. We study
vection in low temperature helium gf%,2] showed that Nu two cases(i) a circulation andii) a shear flow, which focus

has a simple power-law dependence on Ra: separately on the two dominant features of the large-scale
mean flow observed in turbulent convection, with an aim of
Nu~ R&’ (1) gaining physical insights or understanding of heat transport

in turbulent convection. The dependence of the heat transport
and the exponens is almost equal to 2/7, which is different on the Peclet number, as estimated by the parameters speci-
from 1/3, the value that marginal stability argumef8§  fying the two flows, is investigated.
would give. This result led to the development of several
theories[2,4—€]. All thege theories give)8=2/7 bgt they Il. THE PROBLEM
were based on rather different physical assumptions. More-
over, some of the assumptions have not been supported by We study the problem of heat transport by a fluid with a
experiments, see, e.d.7]. Further experimental investiga- prescribed time-independent velocity field. To this end, we
tions appeared to indicate a dependencg @in Pr, see, for solve the steady state advection-diffusion equation
example, Ref[8] for a review of the experimental results.
The situation is further complicated by two recent experi- " vi )
mental results. First, Niemekt al. [10] made measurements UCGY)- VTOGY) = kVET(X,Y) @
in low temperature helium gas over a much larger range of
Ra, from 16 to 107, and foundpB close to 0.31. Second, Xu for a given incompressible velocity f|ek1|(x y) in two di-
et al. [11] studied turbulent convection in acetone in severalmensions: 8=x<L and Osy=<L. A temperature difference
experimental cells of different aspect ratios and concludeaf A is applied across thg-direction while no heat conduc-
that there is no significant range of Ra over which the powertion is allowed across the direction. That is, the tempera-
law behavior(1) holds. Furthermore, they showed that for ture fieldT(x,y) satisfies the following boundary conditions:
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FIG. 1. The circulating flow given by Eq5). Both x andy are FIG. 2. Similar plot as in Fig. 1 for the shear flow given by Eq.

normalized byl. The size of the arrow indicates the relative mag- (6) with a linear shear ratey(x) =ax.
nitude of the velocity. The contou® that encloses the lower ther-

mal boundary layer is also shown. half the applied temperature difference drops. This mean

temperature profile is just like that observed in turbulent con-
vection. Thus the thermal boundary layers are not a conse-
quence of the no-slip velocity boundary condition. Rather,
their existence allows for an increase in the heat transport
ﬂ(x=0 )=£(X=L )=0 4) (Nu>1). In other words, the circulation enhances the heat
Y y ' transport. Our present interest is to study how the heat trans-
port by the fluid depends on the strength of the circulation, as
The heat transport by the fluid is then calculated from theneasured by the parameteg or the dimensionless Peclet
temperature field solved. number(Pe, defined byuoL/«.
The mean large-scale flow observed in turbulent convec- The second velocity field studied is a shear along the

tion has two dominant features: it is a circulation that spangoundaryy= 0, with a position-dependent shear ratex):
the whole experimental cell, and it produces a shear near the

boundaries. To gain insights and understanding of how these Ux= 7(X)Y, (63)
two aspects of the velocity field affect or determine the heat

T(xy=0)=4;  T(x,y=L)=0; )

; L . 1
};ansport, we study two different velocity fields. The first one u=-3 7 (X)Y2. (6b)
X In Ref.[5], the large-scale flow in turbulent convection was
. y .
U,=Up sm( L cos( L)’ (50  approximated by a constant shear flow, represented by Eq.

(6) with 5(x) = 5, near the bottom boundary and the effect
of such a constant shear flow on the heat transport was stud-
_ X\ .Y ied. Here we consider a linear shear rag€x)=ax with a
ty= "o CO{ WE)SIH( E)’ (5b) being a constant, which is the simplest case that gives an
exact analytical solution for the temperature field. Such a
whereuy is a constant. Equatiofb) focuses on the circulat- flow again does not satisfy the no-slip boundary condition on
ing aspect of the mean large-scale flow. As seen from Fig. Ix=0, x=L, andy=0, as shown in Fig. 2. As in Rdf5], this
the fluid undergoes a complete cycle across the whole twolow can be taken as an approximation of the large-scale flow
dimensional space. The velocity vanishes at the centem,but near the bottom boundary in turbulent convection. Position-
is finite along the boundarieg=0 andy=L while u, is  dependent shear rates have been considered by one of the
finite along the boundaries=0 and x=L. The velocity present author§l5]. In this work, we study how the heat
field, therefore, does not satisfy the no-slip boundary conditransport by the fluid depends on the paramater Pe de-
tion. Such a circulating flow has been studied in an investifined byal?/«. In this case, Pe gives a measure of the ve-
gation of the effects of a large-scale circulation on passivéocity as well as the shear rate of the flow.
scalar statistic§14]. One of the interesting results found in  For the circulation Eq(5), we solve Eq(2) numerically
that study is that the mean temperature profile is significantlyo get the temperature fielfi(x,y). For the shear flow6),
altered by the velocity circulation, and develops two thermale obtain an exact analytical solution for the temperature
boundary layers at=0 andy=L. Each boundary layer is of field. The heat transport by the fluid is the heat conducted
thickness\ at the central axis of the cell and across whichacross the boundany=0. Thus, Nu is the ratio of the aver-
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93.,' 0.614 | @) 1 Equation(9) states that the heat conducted across the lower
é q o O @) 1 boundaryy=0 is approximately equal to the heat convected
2 = O across the upper edge of the thermal boundary layer. Thus,

5 10 3 0'613102 BT T we can estimate the heat transport by estimating

((uyT)]y=r).  As  ML<1, uy(x,y=\)=—ugm(\/
L)cos@@x/L). A horizontal temperature difference is induced
by the circulation with the boundary=L being hotter than
the boundark=0. We estimatd (x,y=\) to have a similar
cosine dependence ox as (A/2)[1— (8k?/m)cos@x/L)],
wherek is some dimensionless constant. Hence we have
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FIG. 3. Nu as a function of Pe for the circulating flow shown in K L A

Fig. 1. Here, Pe is taken agL/«. The circles are numerical results L

while the solid line is the best linear fit with a slope of 0.497 in the

log-log plot. In the inset, NuP€“%"is plotted versus Pe. The data Using Eq.(7) and the estimate of Nu by/(2)\), Eq. (10)
points are constant within an error of 0.1%), showing the good qualthen gives

ity of the power law.

Nu~k P&, (11
age of the magnitude of the vertical temperature gradient
over the boundary=0 to A/L: Our theoretically estimated exponent 1/2 agrees well with
the numerical result of 0.497.

aT For the shear flow, we obtain an exact analytical solution

-— of the temperature profile. L&t(x,y) be separable i and

Nu= ay y=0 ) y, that is,
—
T T(X,y)=F(X)G(y). (12

Substituting Eq(12) into Eq.(2) and rearranging terms give

aXyF’(X) F"(x) KG”(y) ay* G'(y)
IIl. RESULTS AND DISCUSSIONS Fx) “F(x) Gly) 2 Gy’

Here,(---) indicates an average overfrom x=0 tox=L.

(13

For the circulating flow Eq(5), we numerically solve Eq. Wwhere a prime denotes a derivative with respect to the cor-
(2) and evaluate Nu. As expected, the heat transport is fountesponding variablex ory. The right-hand side of Eq13) is
to increase with the strength of the circulation. In Fig. 3, wea function ofy only when the left-hand side is a function of
show the dependence of Nu on Pe, which can be well reprddothx andy. This can only be the case(x) is a constant,
sented by a power law with an exponent of a least-square-fgayc, and Eq.(13) becomes
value of 0.497. In the inset of Fig. 3, NuP¥*® is plotted

versus Pe. As can be seen, the data points are constant to KG”(Y) }ayQG,(y) -0 (14)
within an error of 0.1%, showing the good quality of the Gly) 2 G(y)
power law.

We shall understand this result in the following. Since theThe exact analytical solution foF is thus

velocity field is incompressible, E@2) implies " NE
y
T(y)=cG(y c1+c2f exp( - —q ) }

fC(JT—Kv*T)-ﬁm:o 8 (15)

with the constants; andc, fixed by the two boundary con-
over any closed curve in the two-dimensional domain ditions in Eq.(3):
where n is the outward normal. In particular, choose the
closed curveC, defined byy=0, y=X\, and O<y<\ with c1=1, (16)

x=0 andx=L, which encloses the thermal boundary layer
1/3{ 1 aL3
Y

3’ 6k

aLs

aty=0 (see Fig. 1 Sinceu, anddT/dx vanish atx=0 and ar-
6k

x=L, uy vanishes ay=0 anddT/dy~0 aty=A\, we have

: 17

C2: -3
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FIG. 4. NuPe ¥ vs Pe for the shear flow E@6) with a linear
shear raten(x)=ax. Here, Pe is taken asL%/«. The data points
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of the exponent is respectively 1/2 and 1/3 for the two ve-
locity fields. For the shear flow with linear shear rate, this
result is also equivalent to a scaling between Nu and the
normalized shear rate with the same exponent 1/3. We have
shown that our numerical result for the circulating flow can
be understood by some theoretical estimatag dfalong the
edge of the thermal boundary layer.

As discussed in the Introduction, the mean large-scale
flow observed in turbulent convection has both the charac-
teristics of the two velocity fields studied here: it is a circu-
lation as well as approximately a shear within a viscous
boundary layer near the boundaries of the cell. Our study
thus suggests that Nu would generally depend on both Pe,
defined by the maximum average velocity of the flow and the
normalized shear rate. It would, therefore, be interesting to
study the heat transport by a prescribed velocity field that has
both features. We shall report such a study and the results

agree with the value of 0.6163 to within an error of less thanelsewherg17].

0.005%.

where vy is the incomplete Gamma functigd6]. The other

two boundary conditions in Eq4) are automatically satis-

fied.
When Pe=al %/« is large,

1 al®
'y( —)~r(1/3)=2.6789[Ref. [16]],

3’ 6k
we have,
a.L3 1/3 yiL a.L3 .
T(y)wA{l—OﬁlG{T) jo exr{—aq )dq}.
(18
Using Eq.(7), we find
Nu=0.6163 P&3 (19

for large Pe. In Fig. 4, we show NuP¥? vs Pe using nu-

merically evaluated results of Nu. The data points agree wit
the value of 0.6163 to within an error of less than 0.005%
Thus, for the shear flow with a linear shear rate, Nu scale
with Pe or equivalently the normalized shear rate to an ex-

ponent 1/3.

IV. SUMMARY AND CONCLUSIONS

There are two limits in which one expects the effect of the
mean large-scale flow on heat transport to be dominated by
one of the two characteristics. The first limit is when the
thermal boundary layer is much thinner than the viscous
boundary layer, which should be the case when Pr is very
large. In this limit, the velocity field can be well approxi-
mated as a simple shear within the thermal boundary layer.
Our result would suggest a scaling of Nu with the normal-
ized shear rate to 1/3. This scaling result was obtained earlier
in Refs.[5,15] for turbulent convection. The second limit is
when the viscous boundary layer, is much thinner than the
thermal boundary layer, which should be the case when Pr is
very small. In this limit, the velocity field within the thermal
boundary layer might be taken as a circulation plus a thin
shear layer. If the ratio of the thickness of the thermal bound-
ary layer to that of the viscous boundary layer is large
enough such that the contribution of the thin shear layer to
the heat transport can be neglected, our result would then
suggest a scaling of Nu with Pe, defined by the maximum
Rverage velocity, to 1/2. Together with the observation that
the maximum mean velocity of the large-scale flow scales
with Ra to an exponent of about 1f23], our result would
urther suggest a scaling of Nu with Ra to 1/4. Such a scaling
was observed in several experimental studi&19 and a
numerical study[20] of turbulent convection in fluids with
small Pr. This scaling result was also obtained in R0
by dimensional arguments. A key step in these dimensional

In this paper, we have studied the problem of heat transd’guments is to approximat&T/dy? by A/(2\?) within the
port by fluid flows with prescribed velocity fields. This prob- thermal boundary layer. This approximation is, however, not
lem is of interest in engineering applications. Our objective@bVious as the temperature should be quite well represented
is, however, to gain insights into the more difficult problem by @ linear function iny within the thermal boundary layer.
of heat transport in turbulent convection. The two velocity

fields that we have studied are, therefore, chosen such that
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